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Abstract

We introduce a numerical model for the simulation of nuclear flames in Type Ia supernovae. This
model is based on a low Mach number formulation that analytically removes acoustic wave propagation
while retaining the compressibility effects resulting from nuclear burning. The formulation presented
here represents a generalization to an arbitrary eos of low Mach number models used in combustion that
are based on an ideal gas approximation. The low Mach number formulation permits time steps that are
controlled by the advective time scales resulting in a substantial improvement in computational efficiency
compared to a compressible formulation. We briefly discuss the basic discretization methodology for
the low Mach number equations and their implementation in an adaptive projection framework. We
present validation computations in which the computational results from the low Mach number model
are compared to a compressible code and present an application of the methodology to the Landau-
Darrieus instability of a carbon flame.

1 Introduction

Currently, the accepted model for Type Ia supernovae is the explosion of a carbon-oxygen white dwarf.
Observational evidence is inconsistent with the nuclear burning occurring in a prompt detonation mode.
Detailed computations show that a detonation predicts excess amounts of iron and fails to account for
significant amounts of intermediate mass elements observed in the spectra of supernovae events. For this
reason, it is believed that at least the initial phases are governed by the propagation of constant-pressure
deflagrations. However, to obtain the energy generation rate needed to explode the star the deflagration
must be dramatically accelerated relative to the laminar flame speed of the burning front. The recent review
article by Hillebrandt and Niemeyer [15] provides an excellent discussion of the issues.

Within the star there are numerous mechanisms that have the potential to accelerate a deflagration wave.
Landau-Darrieus [10,18] instabilities can lead to wrinkling of the flame [5]. Because the lighter ash lies below
the heavier carbon-oxygen fuel, the flame interface is also subject to Rayleigh-Taylor and Kelvin-Helmholtz
instabilities. Finally, the flame can be accelerated by interaction with turbulence arising from convective
instabilities within the flame as well as turbulence generated by the deflagration itself.

Efforts focused on understanding the role of the different types of instabilities on accelerating a nuclear
flame have generated substantial interest in computational studies of flame microphysics. Several authors
have performed simulations in both two and three dimensions based on representing the flame as an interface
propagating through the media, see Hillebrandt and Niemeyer [15] for a discussion of this literature. It has
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also become possible to perform detailed direct numerical simulations in 2D and 3D that fully resolve
the relevant burning and diffusive length scales. Simulations of this type, based on solving the reacting
compressible flow equations are presented by Niemeyer and Hillebrandt [21], Khokhlov [16], Niemeyer and
Hillebrandt [22], and Niemeyer et al. [20].

Although these types of simulation have been able to provide substantial insight into the dynamics of
nuclear deflagrations, they are limited in terms of both the spatial extent that can be modeled and the
computational expense associated with long time integrations. The use of modern adaptive mesh method-
ologies such as FLASH [7, 13] can be used to extend the size of the system that can be modeled; however,
temporal integration remains a problem. The issue arises because the flame phenomena being studied prop-
agate at speeds less than 1% of the sound speed in the star. Thus, time step limitations based on acoustic
Courant-Friedrich-Levy (CFL) considerations severely limit the time step relative to the velocity of the flame.

Our goal in this paper is to introduce a low Mach number formulation of nuclear flames that alleviates
the acoustic time step constraint. This approach, based on low Mach number asymptotics, uses a projection
formulation coupled with higher-order Godunov advective differencing that allows time-steps based on ad-
vection speeds rather than acoustic speeds. This type of approach was first used for combustion by Rehm and
Baum [24] and was derived from low Mach number asymptotics by Majda and Sethian [19]. For problems in
combustion, governed by an ideal gas equation of state, the low Mach number approach has seen substantial
development and has been successfully applied to simulation of laminar and turbulent flames in two and
three dimensions. The methodology presented here generalizes the approach of Day and Bell [11] to the
nuclear deflagration regime. In particular, we discuss the extension of the low Mach number methodology
to degenerate equations of state typical of stellar environments. Day and Bell [11] also provides a survey of
other approaches to low Mach number combustion modeling. For applications of this approach see Bell et
al. [3] and Bell et al. [4].

In the next section we discuss the basic equations and introduce the low Mach number model. In
section 3 we discuss the basic projection algorithm and sketch its incorporation into an adaptive mesh
refinement algorithm. Section 4 presents a validation of the basic by comparison with detailed compressible
computations and presents an initial application of the method to the study of a Landau-Darrieus instability
in two dimensions. In the final section we discuss potential application of this approach to more detailed
study of nuclear flame acceleration mechanisms.

2 Low Mach number model

The low Mach number model is derived from the compressible flow equations using asymptotic analysis.
These equations describe conservation of mass, momentum and energy augmented with species equations
for the isotopes present in the flame. For the stellar conditions typical of C + O flames we are considering
here, the Lewis number, which is the ratio of energy transport to species diffusion, is O(107) and the Prandtl
number, which is the ratio of fluid viscosity to energy transport, is O(10−5). Under these conditions, the
flow is well approximated by the system (see, for example, Timmes and Woosley [26])

∂ρ

∂t
+∇ · ρU = 0

∂ρU

∂t
+∇ · (ρUU + p) = ρ~g

∂ρE

∂t
+∇ · (ρUE + pU) = ∇ · (κ∇T ) + ρU · ~g − ρqkω̇k

∂ρXk

∂t
+∇ · ρUXk = ρω̇k

Here, ρ, U , T and p are the density, velocity, temperature, and pressure, respectively, and E = e+U ·U/2 is
the total energy with e representing the internal energy. In addition, Xk is the abundance of the kth isotope,
with associated production rate ω̇k and energy release qk. Finally, ~g is the gravitational force and κ is the
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thermal conductivity. (We note that the assumptions that fluid viscosity and species diffusion are zero can
be easily relaxed, see Day and Bell [11]).

For the stellar conditions being considered here the pressure contains contributions from ions, radiation,
and electrons. (See Kippenhahn and Weigert [17] for a discussion of equations of state for stellar matter.)
Thus,

p = pion + prad + pele (1)

with
pion =

ρkT

Āmp
, prad = aT 4/3

and pele is the contribution to the thermodynamic pressure due to fermions. In these expressions, mp is
the mass of the proton, a is related to the Stefan-Boltzmann constant σ = ac/4, c is the speed of light,
1/Ā =

∑
k Xk/Ak, and k is Boltzmann’s constant. We note that pressure is of the form p = p(ρ, T, Xk).

The ionic component has the form associated with an ideal gas but the radiation and electron pressure
components do not.

As a prelude to developing the low Mach number equations, we first rewrite the energy equation in terms
of the enthalpy, h = e + p/ρ

ρ
Dh

Dt
− Dp

Dt
= ∇ · κ∇T −

∑
k

ρqkω̇k

For the low Mach number asymptotic analysis, we introduce scaled coordinates in which the time scale
is proportional to the spatial scale times the advective velocity scale. In this scaling, we expand pressure
and velocity in Mach number, M = U/cs, (cs is the sound speed),

p(x, t) = p0(t) + Mp1(t) + M2π(x, t)

with a similar equation for U(x, t) Substituting these expansions in M into the equations of motion given
above, retaining highest order terms in M results in p1(t) = 0 and a modified momentum equation:

∂ρU

∂t
+∇ · ρUU = −∇π + ρ~g. (2)

Thus, the pressure is decomposed into a thermodynamic component, π, that depends only on time and a
perturbation component that is O(M2) For the low Mach number model, we ignore the O(M2) effects on
the thermodynamics. For simplicity, in this paper we will assume that the nuclear flame occurs in an open
environment under constant pressure so that the thermodynamic pressure is, in fact, a constant which we
denote as p0. With this assumption, the enthalpy equation reduces to

∂ρh

∂t
+∇ · (ρUh) = ∇ · κ∇T −

∑
k

ρqkω̇k (3)

The enthalpy and momentum equations combined with the species equations (and conservation of mass)
describe the evolution of the low Mach number system. However, this evolution is also constrained by the
equation of state. We will now show that this constraint is equivalent to a constraint on the divergence of
the velocity field. If we differentiate the equation of state along particle paths we obtain

0 ≡ Dp

Dt
=

∂p

∂ρ

Dρ

Dt
+

∂p

∂T

DT

Dt
+
∑

k

∂p

∂Xk

DXk

Dt
.

Combining this equation with the mass conservation equation, we obtain

∇ · U =
1

ρ∂p
∂ρ

(
∂p

∂T

DT

Dt
+
∑

k

∂p

∂Xk

DXk

Dt

)
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To complete the specification of the low Mach number model, we need to derive the temperature evolution
equation. We note that although the thermodynamic variables are most naturally expressed here in terms
of ρ, T , and Xk, for this derivation, it is more convenient to express the thermodynamics in terms of p, T
and the Xk. With this dependence, differentiating the enthalpy equation we have

Dh

Dt
=

∂h

∂T

∣∣∣∣
p,Xk

DT

Dt
+

∂h

∂p

∣∣∣∣
T,Xk

Dp

Dt
+
∑

k

∂h

∂Xk

∣∣∣∣
p,T,Xj,j 6=k

DXk

Dt

After substituting from the above equations and using the low Mach number condition on p we have

ρcp
DT

Dt
= ∇ · κ∇T −

∑
k

ρ(qk + ξk)ω̇k (4)

where ξk = ∂h
∂Xk

∣∣∣
p,T,Xj,j 6=k

, and cp = ∂h
∂T

∣∣
p,Xk

is the specific heat at constant pressure.

Substituting this into the above equation for ∇ ·U yields an expression for a constraint on the advective
flow velocities:

∇ · U =
1

ρ∂p
∂ρ

(
1

ρcp

∂p

∂T

(
∇ · κ∇T −

∑
k

ρ(qk + ξk)ω̇k

)
+
∑

k

∂p

∂Xk
ω̇k

)
≡ S. (5)

3 Numerical methodology

In this section we discuss the numerical methodology used to integrate the low Mach number equations
described above. Our basic discretization strategy is a fractional step approach based on a projection
approximation. In this approach we integrate the equations for momentum, isotope abundances and enthalpy
using a lagged approximation to the constraint. We then apply a discrete projection to the intermediate
velocity computed in the first step to enforce the constraint. This basic fractional step algorithm is embedded
in a hierarchical adaptive mesh refinement (AMR) algorithm. The version of the methodology presented
here is an adaptation of the method presented by Day and Bell [11] for gaseous combustion. In the next
subsection we describe the single-grid algorithm. We then discuss incorporation of that algorithm into an
adaptive projection framework.

Single grid algorithm

The single grid algorithm is essentially a three-step process. First, we use an unsplit second-order
Godunov procedure to predict a time-centered (tn+1/2) advection velocity, UADV,∗, using the cell-centered
data at tn and the lagged pressure gradient from the interval centered at tn−

1/2. The provisional field,
UADV,∗, represents a normal velocity on cell edges analogous to a MAC-type staggered grid discretization
of the Navier-Stokes equations (see [14], for example). However, UADV,∗ fails to satisfy the time-centered
divergence constraint. We apply a discrete projection by solving the elliptic equation

DMAC 1
ρn

GMACφMAC = DMACUADV,∗ −
(

Sn +
∆tn

2
Sn − Sn−1

∆tn−1

)
(6)

for φMAC, where DMAC represents a centered approximation to a cell-based divergence from edge-based
velocities, and GMAC represents a centered approximation to edge-based gradients from cell-centered data.
The solution, φMAC, is then used to define

UADV = UADV,∗ − 1
ρn

GMACφMAC.

UADV is a second-order accurate, staggered-grid vector field at tn+1/2 that discretely satisfies the constraint
(5), and is used for computing the time-explicit advective derivatives for U , ρh and ρXk.
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In the next step of the algorithm we advance the advection-reaction-diffusion system for ρh and ρXk. For
the supernovae flames considered here, the nuclear burning occurs on a scale faster than the fluid dynamics.
For that reason, we treat the reactions using a symmetric Strang-splitting approach so that the reactions can
be treated with stiff ODE technology. We first advance the reactions terms ∆t/2 in time. We then advance
the advection-diffusion part of the equation ∆t in time followed by a second advancement of the reaction
terms ∆t/2 in time.

The reaction part of the enthalpy and isotope equations are of the form

∂Xk

∂t
= ω̇k

and
cp

∂T

∂t
= −

∑
k

(qk + ξk)ω̇k

For the reaction phase, cp changes with temperature and composition; however, because of the computational
expense associated with computing cp we have frozen its value for the integration of the ODE system.
Numerical tests demonstrated that this simplification did not affect the computed deflagrations. As a result
of this approximation, we do not use the updated temperature from the reaction step to update the enthalpy.
Instead, we explicitly compute the change in enthalpy resulting from the change in isotope abundances and
use this updated enthalpy to derive the correct temperature at the end of the reaction step.

In our implementation, we integrate the chemistry component using time-implicit backward difference
methods, as implemented in VODE [6], a general-purpose stiff ODE integration software package. VODE utilizes
adaptivity in order of accuracy and subcycled time-step selection so that an absolute error tolerance of 10−16

in mass fractions is maintained throughout. Typically, the resulting scheme is between third and fifth order
convergent in time.

After completing the first reaction step, we update the advection-diffusion component of the system.
One numerical issue that must be addressed at this point is the nonlinearity of the enthalpy diffusion. The
advection–diffusion part of the enthalpy equation may be written explicitly in terms of enthalpy diffusion

∂ρh

∂t
+∇ · Uρh = ∇ · κ

cp
∇h−∇ ·

(∑
k

ξk
κ

cp
∇Xk

)
(7)

We advance this equation using a linear Crank-Nicolson algorithm, but the coefficients κ and cp vary with
the solution over time and space. These variations may be incorporated into the linear scheme simply by
using a predictor-corrector iteration (detailed below), where the coefficients at the new-time are re-evaluated
between iterations. With a good initial guess for new-time κ and cp, a single corrector iteration is sufficient
to guarantee stability and second-order accuracy in time.

We begin the advection-diffusion step with the cell-centered data (denoted with a superscript n) obtained
from the initial chemistry advance. A second-order Godunov procedure is used to extrapolate the temper-
ature and abundances at tn to cell edges at tn+1/2 = t + ∆t/2. The fluid density at the edges is computed
using the relation, ρ =

∑
k ρXk, and the enthalpy, h, is computed from ρ, T , and Xk. An explicit update

for the new-time abundances at cell-centers, (ρXk)n+1 may be formed using the extrapolated edge states,
and the projected advection velocity, UADV,

(ρXk)n+1 = (ρXk)n −∆t
(
∇ · UADVρXk

)n+1/2
. (8)

A corresponding cell-centered value of density at tn+1 is then available using the expression ρn+1 =
∑

k(ρXk)n+1.
Next, we predict a preliminary tn+1 value of temperature, T̃ , to be used in the initial estimates of the

new-time transport coefficients. We employ a Crank-Nicolson discretization of the temperature equation
with tn values of κ and cp.

ρn+1/2cn
p

(
T̃ − Tn

∆t
+
(
UADV · ∇T

)n+1/2

)
=

1
2

(
∇κn∇Tn +∇κn∇T̃

)
(9)
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where ρn+1/2 = 1/2(ρn+1 + ρn). The new-time abundances and this preliminary temperature T̃ are then
used to to evaluate provisional fluid properties (κ, cp, ξk)n+1,∗. A predicted value of enthalpy hn+1,∗ is then
computed using

ρn+1hn+1,∗ − ρnhn

∆t
=

(
∇ · UADVρh

)n+1/2 (10)

+∇ · 1
2

[
κn+1,∗

cn+1,∗
p

∇hn+1,∗ +
κn

cn
p

∇hn

]
−∇ · 1

2

∑
k

[(
ξn+1,∗
k

κn+1,∗

cn+1,∗
p

)
∇Xn+1

k +
(

ξn
k

κn

cn
p

)
∇Xn

k

]
.

We complete the predictor component of our advance algorithm by extracting an updated provisional tem-
perature, Tn+1,∗, using Newton’s method from hn+1,∗ and the Xn+1

k values computed earlier.
The corrector step begins with a re-evaluation of κ and cp using Tn+1,∗ and Xn+1

k . The final enthalpy
hn+1 is obtained by solving

ρn+1hn+1 − ρnhn

∆t
=

(
∇ · UADVρh

)n+1/2 (11)

+∇ · 1
2

[
κn+1

cn+1
p

∇hn+1 +
κn

cn
p

∇hn

]
−∇ · 1

2

∑
k

[(
ξn+1
k

κn+1

cn+1
p

)
∇Xn+1

k +
(

ξn
k

κn

cn
p

)
∇Xn

k

]
.

The temperature, Tn+1, is computed by once again inverting the equation of state for enthalpy, with hn+1

and Xn+1
k . The integration of the enthalpy and abundance equations is completed by again advancing the

reaction part of the system ∆t/2 in time. This provides a complete update of the ρ, h, T , and Xk’s at the
new time and allows us to evaluate the constraint on the constraint on the velocity field, Sn+1 at the new
time.

The final step of basic integration step is to advance the velocity to the new time level. For this step we
first obtain a provisional cell-centered velocity at tn+1 using a time-lagged pressure gradient,

ρn+1/2
Un+1,∗ − Un

∆t
+
[
(UADV · ∇)U

]n+1/2 = −∇πn−1/2 + ρn+1/2~g.

At this point Un+1,∗ does not satisfy the constraint. We apply an approximate projection to simultaneously
update the pressure and to project Un+1,∗ onto the constraint surface. In particular, we solve

Lρφ = D(Un+1,∗ +
∆t

ρn+1/2
Gπn−1/2)− Sn+1 (12)

for nodal values of φ, where Lρ is the standard bilinear finite element approximation to ∇ · 1
ρ∇ with ρ

evaluated at tn+1/2. In this step, D is a discrete second-order operator that approximates the divergence at
nodes from cell-centered data, and G = −DT approximates a cell-centered gradient from nodal data. In
the formulation, φ satisfies Neumann boundary conditions at solid walls and inflow boundaries. At outflow
boundaries, Dirichlet conditions are generated to suppress any tangential accelerations on the fluid leaving
the domain. See Almgren et al. [2] for a more detailed discussion of projection issues. Nodal values for Sn+1

for the solution of (12) are computed using a volume-weighted average of cell-centered values. Finally, we
determine the new-time cell-centered velocity field from

Un+1 = Un+1,∗ − ∆t

ρn+1/2

(
Gφ−Gπn−1/2

)
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and the new time-centered pressure from
πn+1/2 = φ.

This completes the description of the time-advancement algorithm.
Before discussing the incorporation of this methodology in an adaptive mesh refinement algorithm, we

note some of the properties of the algorithm. First, we emphasize that the temperature equation is used only
in an auxiliary capacity in the algorithm. The energy is evolved using the numerically conservative discretized
enthalpy equation, (10) and (11). As noted earlier, although the scheme rigorously satisfies conservation of
mass and enthalpy, the evolution does not strictly maintain the equation of state at ambient pressure. Since
the low Mach number asymptotics used to derive the governing equation show that the thermodynamic
pressure only satisfies (1) to O(M2), relaxing the imposition of (1) is a reasonable way of dealing with the
overdetermined system. To control the deviation from the equation of state we add a correction to constraint
equation (5) based on approximating

f

γρ∂p
∂ρ

(
∂p

∂t
+ U · ∇p

)
.

in the intermediate projection used to compute the velocity field required to evaluate convective derivatives.
In this expression γ = cp/cv is the ratio of the two thermodynamic specific heats, and f is a constant
relaxation factor. In particular, we approximate ∂p/∂t by (pamb − p0)/∆t, where p0 is defined discretely
from equation (1), pamb is the specified ambient pressure, and U ·∇p is approximated with upwind differences
using p0. Thus, we are effectively adding a first-order approximation to the material derivative of p0 − pamb

along streamlines. This forcing term prevents the solution from deviating an appreciable amount from the
equation of state while maintaining the second-order accuracy of the overall scheme.

Adaptive mesh refinement

In this section we present an overview of the adaptive projection algorithm. This framework, used in Day
and Bell [11], was initially developed by Almgren et al. [1], and extended to low Mach number combustion
by Pember et al. [23]. The discussion provides only an overview of the methodology. We refer the reader to
the above papers for more details of the basic algorithm.

Our implementation of adaptive mesh refinement (AMR) is based on a sequence of nested grids with
successively finer spacing in both time and space. In this approach, fine grids are formed by evenly dividing
coarse cells by a refinement ratio, r, in each direction. Increasingly finer grids are recursively embedded
in coarse grids until features of the solution are adequately resolved. An error estimation procedure based
on user-specified criteria evaluates where additional refinement is needed and grid generation procedures
dynamically create or remove rectangular fine grid patches as resolution requirements change.

The adaptive integration algorithm advances grids at different levels using time steps appropriate to that
level, based on CFL considerations. The multi-level procedure can most easily be thought of as a recursive
algorithm in which, to advance level `, 0 ≤ ` ≤ `max, the following steps are taken:

• Advance level ` in time one time step, ∆t`, as if it is the only level. If ` > 0, obtain boundary data
using time-interpolated data from the grids at ` − 1, as well as physical boundary conditions, where
appropriate.

• If ` < `max

– Advance level (`+1) for r time steps, ∆t`+1 = 1
r ∆t`, using level-` data and the physical boundary

conditions.

– Synchronize the data between levels ` and ` + 1, and interpolate corrections to finer levels [` +
2, . . . , `max].

The adaptive algorithm, as outlined above, performs operations to advance the grids at each level inde-
pendent of other levels in the hierarchy (except for boundary conditions) and then computes a correction
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to synchronize the levels. Loosely speaking, the objective in this synchronization step is to compute the
modifications to the coarse grid that reflect the change in the coarse grid solution due to the presence of the
fine grid. More specifically, when solving on a fine grid, we supply Dirichlet boundary conditions from the
coarse grid. This leads to a mismatch in the associated fluxes at the coarse-fine interface that is corrected
by the synchronization.

For the adaptive projection methodology presented here there are three basic steps in the synchronization.
First, the values obtained for U , ρXk and ρh are averaged from the fine grid onto the underlying coarse
grid. We view the resulting data as defining a preliminary composite grid solution that is consistent between
levels. We will denote this preliminary solution with a p superscript in the remainder of the section. To
complete the synchronization we need to correct inconsistencies arising from the use of Dirichlet boundary
conditions at coarse-fine boundaries. In particular, we compute increments to ρXk and ρh that correct
the flux mismatches at coarse-fine interfaces. Finally, we correct the velocity field to satisfy a divergence
constraint over the composite grid system.

There are two components that contribute to flux mismatch. First, UADV, the edge-based advection
velocity satisfies the constraint on the coarse level and the fine level separately. However, since we only
satisfy the Dirichlet matching condition for φMAC in (6), the value of UADV computed on the coarse level
does not match the average value on the fine grid. We define the mismatch in advection velocities by

δUADV,` = −UADV,`,n+1/2 +
1
r2

r−1∑
k=0

∑
edges

UADV,`+1,n+k+1/2

along the coarse-fine boundary. We then solve the elliptic equation

DMAC 1
ρ
GMACδe` = DMACδUADV,`

and compute

UADV,`,corr = −1
ρ
GMACδe`

which is the correction needed for UADVto satisfy the constraint and matching conditions on the composite
(`, ` + 1) grid hierarchy. This correction field is used to compute a modification to the advective fluxes for
species and enthalpy that reflects an advection velocity field that satisfies the constraint on the composite
grid.

The second part of the mismatch arises because the advective and diffusive fluxes on the coarse grid were
computed without explicitly accounting for the fine grid, while on the fine grid the fluxes were computed
using coarse-grid Dirichlet boundary data. We define the flux discrepancies

δFρh = ∆t`

−F
`,n+1/2
ρh +

1
r2

r−1∑
k=0

∑
edges

F
`+1,n+k+1/2
ρh


and

δFρXk
= ∆t`

−F
`,n+1/2
ρXk

+
1
r2

r−1∑
k=0

∑
edges

F
`+1,n+k+1/2
ρXk


where F is the total (advective+diffusive) flux through a given interface prior to these synchronization
operations. Since mass is conserved, corrections to density, δρsync, on the coarse grid associated with
mismatched advection fluxes may be computed explicitly

δρXk
sync = −DMAC

(
UADV,corrρXk

)n+1/2 + δFρXk
. (13)

and δρsync =
∑

k δρXsync
k .
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The synchronization correction for h is more complex because of the implicit discretization of diffusion.
In particular, computing δhsync requires solution of a linear system, since the flux mismatch contains implicit
diffusion fluxes from the Crank-Nicolson discretization. To set up the synchronization, we first note that

δ (ρh)sync = hn+1,pδρsync + ρn+1δhsync.

Then, we have (
ρn+1 − ∆t

2
∇κn+1

cn+1
p

∇
)

δhsync = −DMAC
(
UADV,corrρh

)n+1/2 + δFρh

+∇ ·
∑

k

ξk(Tn+1,p)
(

κn+1

cn+1
p

∇δXsync
k

)
. (14)

The corrections δρsync, δρXsync
k , and δρhsync are added to the coarse field at level-`, and interpolated to all

finer levels. Finally, a new temperature field is computed using Newton’s method on all affected levels.
A similar process is also used to generate a correction to the velocity field. However, the velocity flux

correction must be projected to obtain the component satisfying the constraint that updates U and the
component that updates π. At this point there are two additional corrections needed for the composite
velocity field:

• A correction arising because the projection at level ` + 1 used Dirichlet data from level `, leading to a
mismatch in normal derivative at coarse-fine boundaries

• The temperature and species adjustment in the first part of the synchronization leads to an increment
in the computed S field.

Since the projection is linear, both of these corrections as well as the projection of the velocity flux correction
can be combined into a single, multi-level node-based synchronization solve performed at the end of a coarse-
grid time step.

We note that with the synchronization procedure outlined above the adaptive algorithm preserves the
second-order accuracy and the conservation properties of the single-grid algorithm. The methodology has
been implemented for distributed memory parallel processors using the BoxLib class libraries described by
Rendleman et al. [25]. In this approach, grid patches are distributed to processors using a heuristic knapsack
algorithm to balance the computational work developed by Crutchfield [9] (see also, Rendleman et al. [25]).

4 Results

In this section we present two sets of computational results. The first set of results presents comparisons
of the low Mach number model with a comparable compressible code for one-dimensional flames at various
densities. These examples serve to validate the low Mach number algorithm and quantify the errors associ-
ated with the low Mach number approximation. The second set of results describes the application of the
methodology to simulation of Landau-Darrieus instability in two dimensions.

The numerical simulations were performed using the equation of state described by Timmes and Swesty [28]
which computes the internal energy, pressure and thermodynamic derivatives (including the specific heats at
constant volume and pressure) of these quantities as functions of temperature, density and the nuclear-species
mass fractions. The values of the thermal conductivity, κ, are calculated using the procedure described by
Timmes [27].

Validation

The validation studies were performed by comparing one-dimensional laminar solutions tabulated in Dursi
et al. [12] to 12C/24Mg nuclear flames for several physical conditions. Each simulation was constructed in
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the same way. A two-dimensional domain, periodic in one dimension, and with an inflow boundary condition
on one face and an outflow condition on the opposite face is constructed. The simulations are initialized
with For each case we initialize the domain with an interface separating 12C fuel and 24Mg ash. We specify
density and temperature for the 12C and temperature for the 24Mg. For this specification, the temperature
of the fuel must below the initiation temperature for the reaction whereas the initial ash temperature must
be high enough to ignite the flame. The ash density is computed from the equation of state so that pressure
is constant in the domain, consistent with the low Mach number hypothesis. We specify inflow of the cold
fuel at a fixed speed on the 12C side of the interface and specify outflow on the 24Mg side. The region of
contact between the fuel and the ash is smoothed over a distance that is a small fraction of the size of the
computational domain. The grid spacing is specified so that there are approximately 5 computational zones,
at the coarsest level of refinement, in the flame.

The simulation proceeds with a single level of refinement until the initiation of the nuclear flame which
is seen as a deviation of the temperature of the outflowing ash and a sharp increase in the energy generation
rate. At that point, additional levels of refinement are added to the simulation until the speed of the nuclear
flame and the flame shape converges. The simulation is then restarted using this computed constant speed
to obtain a steady laminar solution.

To model the 12C/24Mg reaction we used a single-step mechanism derived from Caughlan and Fowler [8].
This reaction has the form:

Ẋ12C(t) = − 1
12

R(T )ρX2
12C(t)

Ṫ (t) = −QẊ12C(T )/cp.

where the rate of reaction, R(T ), is

R(T ) = 4.27 · 1026
T

5/6
9,a

T
3/2
9

exp

{
−84.165

T
1/3
9,a

− 2.12 · 10−3T 3
9

}
,

T9 = T/109 K, T9,a = T9/(1 + 0.0396T9), ρ is density (at the initial time), and Q is a constant. For the
12C/24Mg reaction, the value of the specific energy release, Q, is taken to be 5.57 · 1017 erg/g. As noted
above, the specific heat can be held constant with no apparent loss of accuracy. We neglect the effects of
nuclear screening on this rate, as they are quite small for the conditions we consider.

Two 12C/24Mg simulations with initial 12C density values of ρ = 2.5 and 5 · 107 g/cm3, both with a
fuel temperature of 107 K were run. Measured laminar flame speeds differed by no more that .1% from
those listed in Dursi et al [12]. Figure 1 shows the laminar flame solution for temperature, density and flow
velocity for the case in which the initial 12C density is 5 · 107 g/cm3. Because of differences in the ignition
characteristics of these two approaches and the timing of when additional refinement levels are added, FLASH
and the low Mach number code predict slightly different locations for where the flame stabilizes after ignition
and subsequent refinement. For this reason we spatially shift the FLASH solutions for comparison to the low
Mach number results. The shift is computed by minimizing the L1 of the difference in solution vectors for
the laminar flames. As seen in Figure 1 the difference is largest near the steep change in temperature. The
difference for temperature is in no case larger than approximately 1.25%; for density and flow velocity, the
difference is no larger than 1%. We note that the shifts representing minor differences in where the flame
stabilizes after ignition.

Finally, we make some additional remarks concerning the relative efficiency of the low Mach number
method compared to the compressible methods. The low Mach number method in this paper and that
used in FLASH have similar strategies for resolving spatial structures in the fluid flow. Therefore, they
tend to result in similar resolutions in their spatial discretizations. Where they differ is in the time-step
requirements. The time steps in a compressible method are limited by the need to obey the CFL constraint
using as a velocity the speed of sound in the fluid; the low Mach number method has a similar CFL
constraint, however it uses the fluid advection velocity. For the case considered in this section, the speed
of sound is approximately 5 · 108 cm/s, while a typical advective velocity is the laminar flame speed, which
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Figure 1: Laminar flame solution for ρ = 5 · 107 g/cm3, T = 107 K. Shown are the solutions for density,
speed, and temperature. The difference with the FLASH results from Dursi et al. [12] is indicated on the
temperature result

11



is approximately 6.82 · 105 cm/s. Thus, the low Mach number implementation requires roughly a factor of
1000 fewer time steps to model the same flow. For lower density flames, and flames that contain more than
one species, this disparity can be even greater. For example, a flame consisting of 75% 12C and 25% 16O at
a density of 2.5 · 107 g/cm3 has a ratio of sound speed to laminar speed of nearly 5000.

Landau-Darrieus simulations

In this section we describe simulations designed to illustrate the Landau-Darrieus (LD) instability in a
nuclear flame using direct numerical simulation. A perturbed initial planer inflow of 12C fuel impinges on a
hot, lower density 24Mg ash. As above, the fuel burns in a single-step mechanism to form the ash. The initial
perturbation is formed by shifting the laminar flame solution for the corresponding density, temperature,
and mass fractions such that a fixed number of wavelengths of random phase and amplitude are contained
in the domain.

Figure 2 illustrates the LD instability by showing the time history of velocity field. In this calculation
the random perturbation of the initial planar laminar solution contained 30 frequencies of amplitude ap-
proximately 50 times the laminar flame thickness. The domain is 2.56 cm× 1.28 cm with 1024x512 zones at
the coarsest level of refinement. Cells with steep temperature gradients were refined up to two levels giving
an effective computational domain of 4096x2048 zones. The density of the 12C fuel is 5 · 107 g/cm3 and the
inflow temperature is 107 K; 12C fuel is being passed in from the bottom into the ash that is at the top of
the figure (i.e. the center of the star is above the top of the figure.) In this figure, the letters A and B mark
two cusps that slowly coalesce to form a single LD cusp. This behavior was also seen in the LD calculation
described next, and we conjecture that in periodic domains LD cusps will always coalesce until only one
cusp remains. Figure 3 explains the appearance of the ‘searchlight’ features in Figure 2. The flow speed in
the ash in the valleys between the cusps is higher than the flow speed in the ash above the peak of the LD
cusp, except that the flow speed in the ash at the cusp is larger, decreasing quickly. The flow speed in the
fuel is depressed the valleys between the cusps relative to the flow speed in the fuel below the LD cusps.

Figure 4 shows a well developed LD cusp for a simulation performed on a smaller domain using the same
material parameters as in the previous example. In this case, only 5 frequencies were used to randomize the
planar laminar solution. After about 2–3 µs the details of the initial perturbations have disappeared and the
LD cusps have coalesced. We continued to track the solution up to 10 µs. Figure 5 shows the displacement in
the stabilized LD cusp over a time range of approximately 3 µs, indicating a increase in the laminar speed of
12, 210 cm/s, or about 1.8%. Over the time period 3–10 µs the amplitude of the cusp decreases by .009 cm,
which is approximately 10% of the extent of the cusp at t = 3 µs. The long time behavior of an isolated
cusp is under investigation.

We note that the behavior of the flame undergoing the Landau-Darrieus instability at this density is
considerable smoother than that shown in Niemeyer and Hillebrandt [21] for the same density. A large part
of the difference is in the initialization—the flame in the present case was mapped onto the grid in steady
state, and the low Mach number formulation means that no transient compression or rarefaction waves
disturbed the flow ahead of the flame.

Several mechanisms have been proposed [15] that could give rise to an acceleration of the laminar flame
speed in a Type Ia supernova. One part of some of these mechanisms is that the LD instability through the
wrinkling in the flame surface, while not giving rise to turbulent motion, could give rise to sufficient flame
speed acceleration to account for observed isotopic abundances and energy release. These calculations seem
to indicate the LD instability by itself is insufficient to give rise to significant acceleration of the flame front.

5 Conclusions

The low Mach number numerical methods for gaseous combustion introduced by Day and Bell [11] has
been successfully extended to account for non-ideal gas law equations of state. The method yields results that
compares well with established compressible simulations (Dursi et al. [12]). The low Mach number method
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Figure 2: Time history of LD simulation, showing coalescence of LD peaks (e.g., A and B); ρ = 5 ·107 g/cm3

and T = 107 K. Shown is vertical flow velocity. The ‘searchlights’ are regions of lower flow speed in the ash
(see Figure 3.) Time increases down the left hand column from .78 µs and continues down the right column
to 3.4 µs.
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Figure 4: Landau Darrieus Cusp: 12C, ρ = 5 · 107 g/cm3, T = 107 K; t = 10 µs.

enables new astrophysical problems to be explored, such as fully resolved instabilities at low-moderate
densities; such problems are not tractable with a fully compressible code.

The program described in this paper will be used to conduct several sets of numerical experiments
aimed at increasing our understanding of the microphysics of nuclear flames. Already, the program has
been extended to handle more than one nuclear reaction, more than two isotopes, and three dimensions.
This code will be used to perform a comprehensive examination of the phenomenology of two dimensional
instabilities of the flame front. Later, the effects of Landau-Darrieus and Rayleigh-Taylor instabilities and
their interaction with turbulence will be examined in three dimensions.
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